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Using Monte Carlo simulations of a touching-bead model of double-stranded DNA,

we show that DNA extension is enhanced in isosceles triangular nanochannels

(relative to a circular nanochannel of the same effective size) due to entropic

depletion in the channel corners. The extent of the enhanced extension depends

non-monotonically on both the accessible area of the nanochannel and the apex

angle of the triangle. We also develop a metric to quantify the extent of entropic

depletion, thereby collapsing the extension data for circular, square, and various

triangular nanochannels onto a single master curve for channel sizes in the transition

between the Odijk and de Gennes regimes. VC 2013 American Institute of Physics.

[http://dx.doi.org/10.1063/1.4794371]

I. INTRODUCTION

Understanding the extension of polymers in two dimensional confinement (i.e., in nanochan-

nels) has become especially important in recent years in the context of single molecule genomic

mapping of DNA.1–8 Rectangular nanochannels or approximations thereof are by far the most

widespread experimental geometry, since these shapes are amenable to standard lithographic

techniques. In an intriguing alternate approach, Huh et al.9 showed that mechanical deformation

of cracked polydimethylsiloxane (PDMS) leads to isosceles triangular nanochannels, where the

apex angle and the size of the nanochannels depend on the strain applied to the material. Similar

strategies have been used to create triangular nanochannels to stretch DNA or control its trans-

port rate.9–12 In the present contribution, we show that the extension of DNA in these triangular

nanochannels can be mapped onto the models developed for circular and rectangular nanochan-

nels, provided that we account for the role of the corners in a triangular channel.

In our analysis, we will focus on nanochannels of characteristic size D, which lie between

the Odijk regime13 of strong confinement (D � lp, where lp is the persistence length of the

chain) and the de Gennes regime14 of weak confinement (l2
p=w � D � Rg, where w is the effec-

tive width of the DNA and Rg is its radius of gyration). These sizes are the relevant range for

most experimental data.7,15 Previous simulation work15–19 indicates that the average extension

of DNA in square nanochannels in this transition regime scales with the channel size as

hXi � D�1
eff ; (1)

where Deff � D� w is the effective channel size available to a chain with finite width w.

Alternatively, we could consider an effective area Aeff � D2
eff , as illustrated in Fig. 1(a). If the

scaling law in Eq. (1) is robust with respect to the channel shape, then

hXi � A
�1=2
eff : (2)

However, Odijk20 suggested that the stiffness of the chain leads to entropic depletion from the

corners. This idea is illustrated in the schematic of Fig. 1(a), where the DNA can more easily
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bend to fit into the corner with the larger angle. To be precise, the number of configurations

available near a corner is reduced by the penalty for bending the DNA on a length scale com-

mensurate with its persistence length. If entropic depletion is substantial, then Deff is no longer

the proper length scale and Eq. (2) is not valid.

In what follows, we use Monte Carlo simulations of confined DNA15,21 to show that

entropic depletion indeed plays an important role in a triangular nanochannel, as seen in the

simulation data in Fig. 1(b). Entropic depletion increases the extension relative to a circular

nanochannel with the same value of Aeff . Unfortunately, this result renders Eq. (2) invalid for

triangular nanochannels. We construct a new length scale, Fav, that accounts for the entropic

depletion and collapses all of the data for circular, square, and isosceles triangle nanochannels

of different apex angles onto the scaling law

hXi � F�1
av (3)

in the technologically relevant transition regime between the Odijk and de Gennes regimes.

II. SIMULATION METHOD

Our simulations employ the same model as our previous work for square nanochannels.21

Briefly, the DNA backbone is represented by a series of touching beads of diameter w¼ 4.6 nm,

the Stigter effective width for DNA in TBE 5� buffer,15,20 and the commonly invoked persist-

ence length lp¼ 53 nm.22 The chain has N¼ 1024 beads, giving a contour length L¼ 4.7 lm.

The beads exhibit hardcore excluded volume interactions with one another and with the channel

walls. The persistence length is implemented by a discrete wormlike chain bending potential23

Ubend

kBT
¼ lp

w

XN�2

k¼1

ð1�~uk �~ukþ1Þ (4)

applied to adjacent beads, where ~uk is the unit vector from the center of bead k to that of bead

kþ 1, kB is Boltzmann’s constant, and T is the temperature.

FIG. 1. (a) Schematic representation of an isosceles triangular channel in our simulations. The DNA is represented by

beads with hardcore excluded volume interactions with one another and the walls. The area of the channel that is accessible

to the bead centers (bounded by the dashed line) is the effective area. The thick black curve schematically depicts a portion

of a DNA molecule projected onto the channel cross-section. The semiflexible nature of the chain decreases the probability

of having a high radius of curvature and therefore restricts the chain from fitting easily into the corners of the channel. (b)

A probability density plot from our simulations (see Sec. II) for an apex angle of 120�. The effective area boundary from

panel (a) is included for reference. Note the entropic depletion in the corners caused by the bending penalty illustrated in

(a), which increases as the angle of the corner decreases.
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Configurations were generated by a Metropolis Monte Carlo simulation using pivot, crank-

shaft, and reptation moves. Simulations for each channel were performed in parallel using 4

replicates. For a given configuration, we computed the span, X ¼ maxðxiÞ �minðxiÞ, where xi

is the position of the ith bead in the direction along the channel axis. We use the mean span,15

hXi, as the measure of the average chain extension, since this is the experimentally relevant pa-

rameter. To determine an appropriate sampling interval, we calculated its auto-covariance

function,24

ChXiðnÞ ¼
hXðmÞXðmþ nÞim � hXi

2

hX2i � hXi2
: (5)

We found that a sampling interval of n ¼ 2:048� 107 trial moves yields a sufficiently low

auto-correlation in the majority of the simulated channels without significantly under-sampling

in large channels. Each simulation run was initialized from a straight chain and allowed to

equilibrate for 1.024� 108 trial moves before recording configurations. Each replicate produced

250 statistically independent configurations, yielding 103 total configurations per channel.

We performed simulations in isosceles triangle nanochannels with apex angles from 15� to

165� in increments of 15�, keeping the effective area Aeff constant. These simulations were

repeated for six different values of Aeff . Circular channels were simulated for the same effective

areas and several additional values. Square channels were simulated at selected effective areas

for comparison. Since much of the data in the figures overlap, tabulated data of the effective

areas, corresponding fractional extensions and the standard error for each measurement are also

reported.25

III. RESULTS AND DISCUSSION

We begin our analysis by testing whether the scaling in Eq. (2) captures the simulated

extension data. As we would expect from similar simulations,15–19 the data for the circular

channels and square channels in Fig. 2 are well approximated by the scaling law for sensible

values of the fractional extension, hXi=L � 0:2. Note that our chains do not possess sufficient

contour length (L ffi l3
p=w2) required to enter the de Gennes regime.15 Thus, the data for small

extensions in Fig. 2 correspond to a transition from confinement to the bulk.15

FIG. 2. Fractional mean span plotted as a function of the effective area. Black triangles are triangular channels with differ-

ent apex angles, red circles are circular channels, blue squares are square channels. The symbols’ sizes are proximate to the

standard error. The dashed line shows the scaling of Eq. (2). For completeness, the data are tabulated.25
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The data in Fig. 2 indicate the failure of cross-sectional area to adequately predict DNA

extension in triangular channels; even in the steepest portion of the curve, the same extension

was attained in channels with effective areas differing by a factor of two by changing the apex

angle. Indeed, channels with the same effective area but different shape or apex angle vary in

mean span by as much as 20%. This deviation is statistically significant, since the standard

error in the measurement of the chain extension is around 1%. In comparison, the largest

discrepancy between circles and squares is only 3%, essentially within the statistical error.

In general, a triangular nanochannel leads to increased extension when compared to a

circular channel with the same effective area. The extent of this increase, plotted in Fig. 3 as a

relative extension with respect to the circular channel, depends on both the effective area of

the channel and the apex angle. For the smallest channel, the relative extension is modest and

relatively insensitive to the apex angle. As the channel size increases, we observe two distinct

patterns. First, there is a general trend in the relative extension with varying apex angle, leading

to a global maximum at the largest apex angle, a broad minimum region somewhere around an

equilateral triangle, and a local maximum at the smallest apex angle. Second, the enhancement

in the stretching is non-monotonic in effective area. In the left panel, corresponding to the

smaller channels, the enhancement increases with Aeff . In the right panel, corresponding to the

larger channels, the enhancement decreases with Aeff . These trends in Fig. 3 are also apparent

in Fig. 2, with the circles and triangles essentially overlapping for our largest and smallest

channels.

The entropic depletion concept20 explains the trends with apex angle and channel size in

Fig. 3. It is easiest to understand the principle of entropic depletion by comparing the cross-

sectional distribution of segments in a circular channel, which has no corners, to a square chan-

nel. Figure 4 shows the probability densities p(y, z) for different channels with a fixed value of

Aeff ¼ 103w2, created by binning the configuration data into pixels of size 6:25� 10�2w2. For

the circular cross-section, nearly the entire channel is sampled with a probability density of at

least 10�6. The white edge (p < 10�6) of the probability density near the wall indicates the

excluded area resulting from the finite diameter of the beads, analogous to the schematic in

Fig. 1(a). Most of the roughness around the edge of the plot comes from intentional pixelation

to achieve smooth interpolations. The circular channel has no corners, so there cannot be any

entropic depletion due to a corner. In contrast, entropic depletion caused by the physical corners

in the square channel leads to rounded corners in the probability density. The region where the

probability of sampling was below 10�6 extends from the vertex to a point outside the region

FIG. 3. Mean span in triangles normalized by that of a circular channel of equal effective area as a function of apex angle

in the triangle. The particular values of Aeff are listed in the legend. The data are separated into two panels for clarity. The

relative extension increases with Aeff in the left panel and decreases with Aeff in the right panel.

024102-4 Reinhart, Tree, and Dorfman Biomicrofluidics 7, 024102 (2013)



of hardcore excluded volume interactions with the wall. The entropic depletion effect also prop-

agates into the channel somewhat, leading to rounding of the inner contours of the probability

density. However, the bulk of the probability density (at the center of the channel) exhibits a

circular symmetry that is consistent with blob theory14 and essentially the same as the probabil-

ity density for the circular channel. Thus, while there is some entropic depletion due to the

corners in a square channel, the net effect is small. Indeed, the limited entropic depletion and

circularly symmetric probability density in a square channel explain the excellent agreement

between scaling theories, which do not account for the channel geometry, and simulations in

square and rectangular channels.15–19 The details of the channel geometry are adsorbed into

minor changes to the scaling law prefactor, at least until the rectangle becomes so anisotropic

that it begins to approach a slit.14

In contrast to the circular and square nanochannels, the triangular nanochannels in Fig. 4

feature substantial entropic depletion near an acute angle. Naturally, there is minimal entropic

depletion near an obtuse angle since the DNA can easily bend to fit into such a corner. Indeed,

the probability density near an obtuse angle is similar to that near the perimeter of the circle in

Fig. 4(a). The extent of the entropic depletion increases as the angle of the corner decreases,

thereby explaining the non-monotonic relationship between the relative extension and apex

angle in Fig. 3—the global maximum in the enhanced stretching is achieved with two depleted

corners (large apex angle), the local maximum is achieved with one depleted corner (small

apex angle), and the least entropic depletion occurs when there are no small corners (equilateral

triangle).

Entropic depletion also produces the non-monotonic dependence of the enhanced stretching

as a function of the effective area, but the origin of this trend is more subtle than the trend in

the apex angle. Entropic depletion is a local effect; the chain is depleted from a region near the

corner because the penalty for bending into the corner is large compared to thermal energy.

However, the extent to which the entropic depletion in the corner affects the extension of the

chain depends on how easily a subsection of the chain can coil in the center of the channel.

For the smallest channel in our simulations, the chain can hardly coil in the center of the chan-

nel due to its stiffness. At this lower limit, there is a slight increase in the extension due to

entropic depletion, but the enhanced stretching is insensitive to the apex angle. As the channel

size increases, the role of the entropic depletion becomes more important since the chain is

able to coil in the center of the channel. Here, the available configurations for part of the chain

in the corner are distinctly different than those available to the same section of the chain if it

was in the center of the channel. Eventually, the channel size becomes so large that we reach

the unconfined (bulk) limit. At this upper limit, all relative extensions should approach unity

since the polymer is no longer aware of the channel shape or size. Since both the lower and

FIG. 4. Probability density plots of channels with effective area Aeff ¼ 103 w2 created by binning the configuration data

into pixels of size 6:25� 10�2 w2. Black lines indicate channel boundaries. If the probability density in the pixel is less

than 10�6, the pixel is white. (a) Circular channel. (b) Square channel. (c) Triangular channel with apex angle 30�. (d)

Triangular channel with apex angle 150�.
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upper limits in channel size have minimal entropic depletion, there must be a maximum in the

relative extension versus effective area at a moderate channel size.

While the stretching of the chain depends on the geometry of the triangle, Fig. 5 shows that

the distribution of the chain density in the axial direction is independent of the apex angle. To

create this distribution, we computed the span X for each sampled chain configuration and then

normalized the axial position x of each bead in that chain with its span. For a given apex angle,

we can then construct a probability density in this normalized coordinate system by binning the

data for all of the samples. In this way, we are able to collapse the data for all apex angles into

a single plot. The symmetry of Fig. 5 arises from the arbitrary choice of the labels for the end/

start of the chain. The highest segment density is at the ends of the chain, where the excluded

volume interactions are small. The plateau in the segment density starting from x/X¼ 0.5 and

extending outward corresponds to the segment density we would expect to see for an infinite

chain with no end effects. The collapse of the data for all of the apex angles also confirms that

the chains are long enough to be stretched in the axial direction even for the largest and smallest

apex angles. While these channels appear slit-like in their cross-section, the entropic depletion

from the corners makes them appear dramatically less anisotropic to the DNA.

The data in Fig. 3 embody the key practical result of our analysis. These curves provide

the map from results for circular channels, which are relatively easy to obtain, to triangular

nanochannels. Moreover, the data suggest that the triangular channels from Huh et al.9 are close

to the region where one benefits the most from entropic depletion. In their DNA experiments,

the channels were approximated as isosceles triangles with an apex angle of roughly 155� and

an effective area Aeff 	 600w2, close to the channel area exhibiting the best stretching enhance-

ment in Fig. 3. Our simulation data also agree well with the experimental value of hXi=L ¼ 0:3
obtained in these experiments.9

From a fundamental perspective, we would also like to have a method for collapsing all of

the extension data in Fig. 2 onto a single master curve. We propose to use the characteristic

length scale of the probability distribution, rather than the size of the channel, in order to

account for the entropic depletion from the corners. To determine this size, we first compute

the eigenvectors of the covariance matrix for the bead coordinates projected onto a plane whose

normal vector points down the channel axis. We then use a bilinear interpolation function to

evaluate the observed probability density along each of the eigenvectors. For smoothness and

consistency, the bin size of the probability density is scaled inversely to the logarithm of Aeff

such that the bin size of the smallest channel is 36 pixels/w2 and the largest is 4 pixels/w2. The

interpolated data series are then fit with 4th degree polynomials to smooth the data. Figure 6

FIG. 5. Axial chain density distributions for triangular channels with Aeff ¼ 103 w2. Positions are normalized by the span X
of each configuration. Each bin has a width of 1% of the total span. Lines are different apex angles.
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shows one example of the data generated by this algorithm. Since the distribution is different

on the two eigenvectors, we take a geometric average of the full width at half maximum of the

fitted polynomials for each eigenvector and define this quantity Fav as the length scale for the

probability distribution. The results for Fav for all of the nanochannels, obtained using this

approach, are tabulated.25

By plotting mean span against our calculated Fav, we see a collapse of the data along a sin-

gle curve. In contrast to Fig. 2, the data in Fig. 7 show a smooth power-law scaling hXi � F�1
av

FIG. 6. A probability density plot from the simulation for an apex angle of 45�. The eigenvectors of the covariance of the

projected bead positions are overlayed in black. Interpolated data from each of the eigenvectors are shown as histograms in

the adjacent panels (vertical on the right, horizontal on top). Lines in the side panels are 4th degree polynomial regressions

of data sets. The geometric average of the full width at half maximum of the polynomials is defined as Fav.

FIG. 7. Fractional extension plotted as a function of the characteristic size of the probability density in the channel cross-

section, Fav. Black triangles are triangular channels, red circles are circular channels, and blue squares are square channels.

Symbols are sized proximate to the standard error. The dashed line shows �1 scaling. Tabulated data are also available.25
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with the same prefactor for circles, squares, and triangles. As we noted in the context of Fig. 2,

we do not expect to see a de Gennes regime for this short chain, since it cannot form isometric

blobs.15,26

IV. CONCLUDING REMARKS

We have demonstrated that DNA confinement in isosceles triangular nanochannels leads to

enhanced DNA stretching, when compared to an equivalent size circular channel, and that the

extent of this enhanced stretching depends on the apex angle and size of the nanochannel. The

sharp corners lead to entropic depletion therein, which gives rise to a non-monotonic behavior

in the extension as a function of the apex angle. Our simulation results also provide insight into

the entropic effects in corners, a phenomenon which has received little attention so far.20

While we are able to obtain a description of chain extension in triangular confinement that

collapses the data, our approach should be regarded as a phenomenological description rather

than generic approach for predicting DNA extension in complex geometries. Based on Fig. 7, it

seems that Fav is the relevant length scale to describe a channel-confined polymer in the transi-

tion between the Odijk and de Gennes regimes. However, computing this quantity requires the

cross-sectional probability distribution, data which would be virtually impossible to acquire

in an experiment. Furthermore, if the spatial coordinates of each segment of the polymer are

already known, then the mean span is also known. Until there is an a priori approach to com-

pute Fav for a given channel geometry, we view our approach and the data obtained here25 as a

useful reference for experimental design, rather than a comprehensive theoretical framework.

Although we focused exclusively on the extension of the chain in a triangular nanochannel,

it is reasonable to assume that the hydrodynamic mobility of the chain will also be affected by

the channel shape. In the transition between the Odijk and de Gennes regimes, we might expect

that the hydrodynamic mobility will decrease in a triangular channel (when compared to the

equivalent circular channel) due to the viscous dissipation in the corners of the channel.

However, if we move to even smaller channels in the Odijk regime, we might expect the hydro-

dynamic mobility to increase in a triangular channel because the lubrication layer between the

chain and the channel is thicker in the corners. Ultimately, these questions need to be resolved

by detailed calculations of the fluid flow18 that are well beyond the scope of this paper. Indeed,

calculating such flows can be challenging due to the sharp corners and the lower symmetry

when compared to a rectangular channel. In this case, sophisticated hydrodynamic simulation

methods for confined polymers27 are probably necessary.
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